

Product Description

The Solitron Midi Analog Switching is a single-phase SSR that provides proportional output power in relation to the control signal level applied. This microprocessor-based device provides for 5 different switching modes integrated into one package. A selector switch on the front of the device is used for the selection of the preferred mode of operation, i.e., either Phase Angle, Distributed Full Cycle or Burst

Control. This multi-function selection makes this device ideal for the control of a variety of loads, including heaters and lamps. The control signal can be either $4-20 \mathrm{~mA}$ or 0 10VDC. 4 mA or OV correspond to zero output power, whilst 20 mA or 10 VDC correspond to full output power.
The product is ready to mount on DIN-rail or chassis and comes with integral heatsink.

- AC semiconductor contactor
- Multi-function - 5 selectable modes of operation: Phase Angle, Distributed Full Cycle and Burst Control (1, 3 and 10s)
- Direct copper bonding (DCB) technology
- LED-indication for control and load status
- Operational ratings up to 50 AACrms and 600 VAC
- 4-20mA or $0-10 \mathrm{~V}$ control input
- Built-in varistor
- Non-repetitive voltage: Up to 1200Vp
- Opto-isolation > 4000VACrms
- Cage clamp terminals
- IP20 protection

Type Selection

Switching mode	Rated operational voltage	Control input	Rated operational current	Terminal layout
P: Proportional Output	23: 230VACrms 48: 480VACrms 60: 600VACrms	$\begin{aligned} & \text { V: } 0-10 \mathrm{VDC} \\ & \text { I: } 4-20 \mathrm{~mA} \end{aligned}$	50: 50AACrms	E: Contactor

Selection Guide

Rated operational voltage	Non-rep. voltage	Control input	Supply voltage	Rated operational current (50 A)
230VACrms	650Vp	0-10VDC	24VAC/DC	RJ1P23V50E
		4-20mA		RJ1P23150E
480VACrms	1200Vp	0-10VDC	24VAC/DC	RJ1P48V50E
		4-20mA		RJ1P48150E
600VACrms	1200Vp	0-10VDC	24VAC/DC	RJ1P60V50E
		4-20mA		RJ1P60150E

Insulation

Rated insulation voltage Input to output	≥ 4000 VACrms
Output to case	≥ 4000 VACrms

Thermal Specifications

Operating temperature	-20 to $+60^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Storage temperature	-40 to $+100^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$

General Specifications

Input Specifications

	RJ1P..I...
Current controlled input Control current range	$4-20 \mathrm{~mA}$
Max. allowable input current	50 mA
Pick up current	4.2 mA
Drop out current	3.9 mA
Control status indication	Green LED
Reverse polarity protected	Yes
Voltage drop	10 VDC @ 20mA

Housing Specifications

Weight	Approx. 430 g
Housing material	PBT Flame retardant
Control terminal cable size	
Min	$1 \times 0.5 \mathrm{~mm}^{2}(1 \times$ AWG20)
Max	$1 \times 4.0 \mathrm{~mm}^{2}(1 \times$ AWG12) or
	$2 \times 2.5 \mathrm{~mm}^{2}$ (2 x AWG14)
Mounting torque max.	0.6 Nm Posidriv 0 bit
Control terminal screw	M3
Power terminal cable size	
Min	$1 \times 4 \mathrm{~mm}^{2}(1 \times$ AWG12)
Max	$1 \times 25 \mathrm{~mm}^{2}(1 \times$ AWG3) or $2 \times 10 \mathrm{~mm}^{2}$ ($2 \times$ AWG6)
Mounting torque max.	2.5 Nm Posidriv 2 bit
Power terminal screw	M5

Output Specifications

Rated operational current AC51 @Ta $=25^{\circ} \mathrm{C}$	50AACrms
Min. operational current	150 mAACrms
Rep. overload current $\mathrm{t}=1 \mathrm{~s}$ (Tj init. $=25^{\circ} \mathrm{C}$)	$<200 \mathrm{AACrms}$
Non-rep. surge current $\mathrm{t}=10 \mathrm{~ms}$ $\left(\mathrm{Tj}\right.$ init. $=25^{\circ} \mathrm{C}$)	$1900 \mathrm{~A}_{\mathrm{p}}$
Off-state leakage current, @ rated voltage and frequency $\mathbf{1}^{2} \mathrm{t}$ for fusing t=10 ms	$<3 \mathrm{mArms}$
On-state voltage drop @ rated current	$18000 \mathrm{~A}^{2} \mathrm{~s}$
Critical dV/dt off-state	1.6 Vrms

Terminal Layout

Mode Selection

MODE 1 Phase Angle Switching
MODE 2 Distributed Control
MODE 3 Burst Switching (1 sec. period)
MODE 4 Burst Switching (3 sec. period)
MODE 5 Burst Switching (10 sec . period)

Transfer characteristics

Output power as a function of control input

Control Current (mA)	Control Voltage (VDC)	Output Power (\%)
4	0	0
8	2.5	25
12	5	50
16	7.5	75
20	10	99

Connection Examples

Note: For the RJ1P..V...., it is possible to have the ground terminals of the supply and control power supplies used commoned. In the case, this common ground is connected either to terminal A2 or terminal A3. This is only applicable when a 24 VDC supply voltage is used. There should be no external direct link from terminal A2 to Terminal A3.

Operation

MODE 1: The Phase Angle switching mode works in accordance with the phase angle control principle, i.e. the output switching point in the AC sine wave depends on the signal level applied at the input. The relay switches off everytime the output current crosses zero.

MODE 2: The Distributed mode provides a number of full cycles, evenly distributed over a fixed period of 1.28 s @ 50 Hz (1.07s @ 60Hz), depending on the control input.

MODE 3, 4, 5: The Burst Switching mode generates a number of full cycles, depending on the control input over fixed periods of 1s, 3s or 10s for MODES 3, 4 and 5 respectively.

Modes 2, 3, 4 and 5 use the zero switching principle, thus ensuring a reduced level of radiated and wire-conducted noise. The Distributed and Burst Switching modes are not recommended for light control due to light-flickering.

LED INDICATION

The top Red LED indicates the load status. It goes ON whenever the load is activated. The Green LED gives indication of the status of the control input.

Upon application of control current (for the RJ1P..I...) to terminals A1-A3, the Green LED will be dimly lit, with its intensity increasing with an increase in control current.

For the RJ1P..V..., the Green

LED will be ON (flickering) upon application of the supply voltage to terminals A2-A4. Once a control voltage is applied to terminals A1-A3, the Green LED will be fully ON , if greater than a threshold voltage (approx. 0.5 V). Note that the first time the device (voltage control version) is to be activated, the mains voltage has to be present for the Green LED to indicate the control status.

Functional Diagram

Note: A2, A4 used only for voltage control version

Derating Curve

Note: Based on 100\% output power

Dissipation Curve

Dimensions

