Photoelectrics
Amplifier
Type S142C.

Product Description

μ-Processor controlled amplifier for one set of photoelectric sensors, type MOFTR. Utilising an 11-pin circular plug for easy connection.
8 A SPDT relay output. Diagnostics for sensor test during operation. Alignment help via LED. Level indica-
tion for dirt accumulation. Manual or automatic emitter power regulation. M aster/ Slave system fully multiplexed for high neighbour immunity. Two emitter codes available for high neighbour immunity between two seperate master/slave networks.

- μ-Processor controlled
- Amplifier relay for photoelectric switc hes
- Automatic or manual emitter power regulation
- Multiplex system, master/slave $\mathbf{2 0}$ ms cycle
- Self-diagnostic functions
- Alignment help
- Rated operational voltage:

24 VAC/DC, 115 VAC or 230 VAC

- Output 8 A/250 VAC SPDT relay
- LED indication: Automatic gain, output, level, emitter or receiver fault

C $6=\sqrt{3}$

Ordering Key

S142 C RXM 924
Type
Special function
Output type
R-Relay
X-None
M-Manuel adj.
A-Manuel and automatic adj.
Power supply

Type Selection

Function	Ordering no. Supply: 24 VAC/DC	Ordering no. Supply: 115 VAC	Ordering no. Supply: 230 VAC
Manuel or Automatic adj. ${ }^{1{ }^{1 /}}$	S142 C RXA 924	S142 C RXA 115	S142 C RXA 230
Manuel adj. ${ }^{2}$	S142 C RXM 924	S142 C RXM 115	S142 C RXM 230

Specifications

Rated operational voltage (U_{B})		Receiver	Pins 6 \& 8
Pins 2 \& 10230	195 to 265 VAC, 45 to 65 Hz	Supply voltage (open loop)	5 VDC
115	98 to $132 \mathrm{VAC}, 45$ to 65 Hz	Short-circuit current	10 mA
924	20.4 to 27.6 VAC/DC Class 2	Input resistance	470Ω
		Emitter power	Settings on DIP switch no 4, 50% or 100% range
Rated operational power			
AC supply	3.3 VA	Adju	
AC/DC supply	1.6 VA / 1.4 W		
Delay on operate (t_{v})	$<300 \mathrm{mS}$	Manual	240 Potentiometer
Outputs Relay Rating ($\mathrm{AgCdO} \mathrm{)}$	1 (micro gap)	Automatic /Auto LED ON) S142CRXAxxx	Potentiometer settings to minimum
Resistive loads AC1	8 A / 250 VAC (2500 VA)	Sensing distance	Maximum range indicated on
DC1	$0.2 \mathrm{~A} \mathrm{/} 250 \mathrm{VDC}(50 \mathrm{~W})$		photoelectric switch datasheets in 100% settings
Or	2 A 25 VDC (50 W)		
Electrical life (typical) AC1	> 100.000 operations	Rated insulation voltage (U_{1})	250 VAC
Output function Relay	Make or break on DIP -switch SPDT	Dielectric voltage	$>2.0 \mathrm{KVAC}$ (rms) (contacts / electronics)
Supply to sensors Emitter	Pins 5 \& 7	Rated impulse withstand volt.	$4 \mathrm{kV}(1.2 / 50 \mu \mathrm{~S})$ (contacts / electronics) (IEC 664)
Supply voltage (open loop)	15 V square wave	Operating frequency (f)	
Current	$<450 \mathrm{~mA}$, short circuit protected	Light / Dark ratio Relay output	$\begin{aligned} & 1: 1 \\ & 20 \mathrm{HZ} \end{aligned}$
Output resistance	10Ω		

Specifications

Response time OFF-ON (t_{on}) ON-OFF (toff)	$20 \mathrm{mS} \times$ no. of systems $20 \mathrm{mS} \times$ no. of systems
Environment	
Overvoltage categoty	III (IEC 60664)
Degree of protection	IP 20 /IEC 60529, 60947-1)
Pollution degree	3 (IEC 60664/60664A, 60947-1)
Temperature	
Operating	$-20 \bigcirc$ to $+50^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+122{ }^{\circ} \mathrm{F}\right)$
Storage	-50° to $+85{ }^{\circ} \mathrm{C}$ (-58° to +185 F)

Housing material	NORYL SE1, light grey
Weight AC supply 200 g AC/DC supply 125 g Approvals UL508, UL325, CSA CE marking EN12445, EN12453, EN12978	

Specifications

Diagnostic

If a fault occurs on either the emitter or receiver the Alarm LED will turn ON.

Receiver fault

During normal operation the receiver is monitored for faults.
If the wires are short-circuited the "Code A, Green LED" flashes at a rate of 2 Hz . If the wires are broken the "Code A, Green LED" flashes at a rate of 4 Hz .

Emitter fault

During normal operation the emitter is monitored for faults.
If the wires are short-circuited the "Code B, Yellow LED" flashes at a rate of 2 Hz .
If the wires are broken the "Code B, Yellow LED" flashes at a rate of 4 Hz .

Alignment

If the alignment DIP switch is set the Yellow Signal LED Flashes according to the signal quality.

Low frequency means weak signal.
Steady indication means maximum signal. On long distance it is not possible to get a steady signal but the alignment is optimal when the led flashes with the highest frequency.
On short distance the emitter power can be reduced using the potentiometer and then get better readings in the alignment LED.
NB! In alignment mode the output is off.

Code A or B

When two master/slave networks are mounted close to each other it is recommended to select one set to Code A and the other to Code B to avoid crosstalk.

Trigger fault

If the triggerwire is interrupted the Alarm LED will turn on.

Master / Slave

Select the first amplifier in the loop to be master and the rest to be slave. See wiring diagram

Operation Diagram

[^0]
Mode of Operation

A multiplexed system consists of 1 master amplifier which initialises the multiplex cycle with a trigger signal, and up to 10 slave amplifiers connected together in a loop via the trigger signal. Pin 9 (trigger signal
out) to pin 11 (trigger signal in). The multiplex cycle is reinitialized automatically by the master each 350 ms or, immediately after the last slave amplifier in the loop has been activated, if the trigger
output of the last slave amplifier is connected to the trigger input of the master. Each photoelectric switch has its own amplifier with a relay output. A multiplexed system allows the use of up to 11
long range photoelectric switches mounted near one another, without having false output signals due to optical crosstalk.

Dimensions

Wiring Diagrams

[^0]: ${ }^{2)}$ Switching function selected by DIP-switch, inverted function on pin 1, 4

