Power analyzers and Energy Meters Power Analyzer Type WM14 96 "Advanced version"

CARLO GAVAZZI

- Protection degree (front): IP65
- 2 digital outputs
- 16 freely configurable alarms with OR/AND logic linkable with up to 2 digital outputs
- RS422/485 serial output (MODBUS-RTU), iFIX SCADA compatibility

Product Description

3 -phase advanced power analyzer with integrated programming key-pad. Particularly recommended for the measurement of the main electrical variables.

- Class 1 (kWh), Class 2 (kvarh)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power Analyzer
- Instantaneous variables read-out: 3 DGT
- Energies readout: 8+1 DGT
- System variables: $\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{LN}}, \mathrm{An}, \mathrm{A}_{\text {dmd max }}, \mathrm{VA}, \mathrm{VA}_{\text {dmd }}, \mathrm{VA}_{\text {dmd }}$ ${ }_{\text {max }}, \mathbf{W}$, W $_{\text {dmd }}, W_{\text {dmd max }}$, var, PF, Hz, ASY
- Single phase variables: $V_{L L}, V_{L N}, V_{L N}$ min,$V_{L N}$ max $, A, A_{\text {min }}$,

- Harmonic analysis (FFT) up to the $\mathbf{1 5}^{\text {th }}$ harmonic (current and voltage)
- Four quadrant power measurement
- Energy measurements: total and partial kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Universal power supply: 90 to 260 VAC/DC, 18 to 60 VAC/DC
- Front dimensions: 96x96mm
- Voltage asymmetry, phase sequence, phase loss control

How to order WM14-96 AV5 3 HR2 S1 AX
Model
Range code
System
Power supply
Output 1
Output 2
Option

Type Selection

Input specifications

Rated inputs	System type: 3	Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Current Voltage	3 (Shunts) 4	Active and Apparent power,	$0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \text { FS +1DGT); }$
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL	Reactive power	$\begin{aligned} & \text { +5DGT) } \\ & 0.25 \text { to } 6 \mathrm{~A}: \pm(2 \% \text { FS }+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(2 \% \mathrm{FS} \\ & \text { +5DGT) } \end{aligned}$
Current	0.25 to $6 \mathrm{~A}: \pm(0.5 \%$ FS $+1 \mathrm{DGT})$ 0.03 A to $0.25 \mathrm{~A}: \pm(0.5 \% \mathrm{FS}+7 \mathrm{DGT})$	Active energy Reactive energy	Class 1 (I start up: 30 mA) Class 2 (I start up: 30 mA)
Neutral current	0.25 to $6 \mathrm{~A}: \pm(1.5 \%$ FS +1 DGT) 0.09 A to 0.25A: $\pm(1.5 \%$ FS +7DGT)	Frequency Harmonic distortion	$\pm 0.1 \% \mathrm{~Hz}$ (48 to 62 Hz) $\pm 3 \%$ F.S. (up to $15^{\text {th }}$ harmonic)
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)		(F.S.: 100\%)

Input specifications (cont.)

Additional errors Humidity	$\leq 0.3 \% \mathrm{FS}, 60 \%$ to $90 \% \mathrm{RH}$
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	$1600 \mathrm{samples} / \mathrm{s} @ 50 \mathrm{~Hz}$
	1900 samples $/ \mathrm{s} @ 60 \mathrm{~Hz}$
Display refresh time	200 ms (FFT off)
	500 ms (FFT on)
Display	
Type	LED, 14mm
Read-out for instant. var.	$3 \times 3 \mathrm{DGT}$
Read-out for energies	$3+3+3 \mathrm{DGT}$ (Max indication:
	$99999999.9)$
Read-out for hour counter	$1+3+3 \mathrm{DGT}$ (Max. indication:
	$99999.99)$

Measurements	Current, voltage, power,
	power factor, frequency
Type	TRMS measurement of
Coupling type	Direct
Crest factor	<3, max 10A peak
Input impedance	
380/660VLL ${ }_{\text {L }}$ (AV5)	$1.6 \mathrm{M} \Omega \pm 5 \%$
120/208V L-L (AV6)	$1.6 \mathrm{M} \Omega \pm 5 \%$
Current	$\leq 0.02 \Omega$
Frequency	48 to 62 Hz
Overload protection	(max values)
Continuous: voltage/current	AV5: 460VLı, 800VL/6A
	AV6: 145 V LN, 250VL/6A
For 500ms: voltage/current	AV5: $800 \mathrm{~V}_{\text {LN }}, 1380 \mathrm{~V}_{\text {L }} / 36 \mathrm{~A}$ AV6: $240 \mathrm{~V}_{\mathrm{LN}}, 416 \mathrm{~V}_{\mathrm{L}} / 36 \mathrm{~A}$

Output Specifications

Digital outputs	
Number of outputs	Up to 2
Type	Programmable from 0.01 to 500
	pulses per kWh/kvarh
	Pulse duration
	$\geq 100 \mathrm{~ms}<120 \mathrm{msec}$ (ON),
	$\geq 100 \mathrm{~ms}$ (OFF)
	according to EN62053-31
Alarm type	
Number of outputs	Up to 2, independent
Alarm modes	Up alarm, down alarm, in
	window alarm, out window
	alarm. Start-up deactiva-
	tion function available for
	all kinds of alarm. All of
	them connectable on all
	variables (see the table "List
	of the variables that can be
	connected to")
Set-point adjustment	From 0 to 100% of the display scale
Hysteresis	display scale From 0 to full scale
On-time delay	$0 \text { to 255s }$
Output status	Selectable; normally
	de-energized and normally
	energized
Min. response time	$\leq 400 \mathrm{~ms}$, filters excluded,
	With FFT off; ≤ 15, with FFT on.
	Set-point on-time delay: " 0 s "
Note	The 2 digital outputs
	can also work as pulse
	output and alarm
	output.
Static outputs	
Purpose	For pulse outputs or for
	alarm outputs
Signal	$\mathrm{V}_{\text {on }} 1.2 \mathrm{VDC} / \mathrm{max} .100 \mathrm{~mA}$
	Voff 30 VDC max.
Insulation	By means of optocuplers,
	$4000 \mathrm{~V}_{\text {RMS }}$ output to measu-
	ring inputs,
	$4000 \mathrm{~V}_{\text {RMS }}$ output to power
	supply input.

Software functions

CARLO GAVAZZI

Power Supply Specifications

AC/DC voltage	90 to $260 \mathrm{VAC} / \mathrm{DC}$ 16 to $60 \mathrm{VAC} / \mathrm{DC}$	Power consumption	AC: 6 VA $\mathrm{DC}: 3.5 \mathrm{~W}$

General Specifications

Operating temperature	$0^{\circ} \text { to }+50^{\circ} \mathrm{C}\left(32^{\circ} \text { to } 122^{\circ} \mathrm{F}\right)$ (RH <90\% non condensing)	Immunity	EN61000-6-2 industrial environment.
Storage	-10° to $+60^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	Pulse voltage (1.2/50 $\mathrm{s}_{\text {s }}$	EN61000-4-5
temperature	(RH <90\% non condensing)	Safety standards	IEC60664, IEC61010-1
Overvoltage category	Cat. III (IEC 60664, EN60664)		EN60664, EN61010-1
Insulation (for 1 minute)	$4 \mathrm{kVAC}_{\text {rms }}$ between measuring inputs and power supply. 4kVAC/DC @ I $\leq 3 \mathrm{~mA}$ between measuring inputs and RS485. 4 kVAC rms between power supply and RS485.	Approvals	CE
		Connections 5(6) A Max cable cross sect. area	$\begin{aligned} & \text { Screw-type } \\ & 2.5 \mathrm{~mm}^{2} \end{aligned}$
		Housing	
		Dimensions (WxHxD) M aterial	$96 \times 96 \times 63 \mathrm{~mm}$ ABS self-extinguishing: UL 94 V-0
		Mounting	Panel
Dielectric strength	4 kVAC RMS (for 1 min)	Protection degree	Front: IP65 (standard)
EMC			Connections: IP20
Emissions	EN61000-6-3 residential environment, commerce and light industry	Weight	Approx. 400 g (pack. incl.)

Insulation between inputs and outputs

	Measuring Inputs V	Measuring Inputs A	Relay outputs	Open collector outputs	Communication Port	Power Supply 90-260VAC/DC	Power Supply 18-60VAC/DC
Measuring Inputs V	-	-	4 kV	4 kV	2.5 kV	4 kV	4kV
Measuring Inputs A	-	-	4 kV	4 kV	2.5 kV	4kV	4 kV
Relay outputs	4kV	4 kV	-	-	2.5 kV	4kV	4kV
Open col. outputs	4kV	4kV	-	-	2.5 kV	4kV	4kV
Communication Port	2.5 kV	2.5 kV	-	-	-	4kV	4kV
90-260VAC/DC	4kV	4kV	4kV	4kV	4kV	-	-
18-60VAC/DC	4kV	4kV	4kV	4 kV	4 kV	-	-

NOTE: In case of fault of first insulation the current from the measuring inputs to the ground is lower than 2 mA .

List of the variables that can be connected to:

- RS485/RS422 communication port
- Alarm outputs ("max / min" variable, "energies" and "hour counter" excluded)
- Pulse outputs (only "energies")

No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3 ph. 3-wire bal. sys.	3 ph. 3-wire unbal. sys.	Notes
1	V L1	X	X	X	x	0	0	- \star
2	V L2	0	X	X	X	0	0	* \star
3	V L3	0	0	x	x	0	0	- \star
4	V L-N sys	0	x	x	x	0	0	Sys = system
5	V L1-2	0	x	x	x	x	x	
6	V L2-3	0	x	x	X	X	x	
7	V L3-1	0	0	x	X	X	X	
8	V L-L sys	0	X	X	X	X	X	Sys = system
9	A L1	X	X	X	X	X	X	- \star
10	A L2	0	X	X	X	X	X	* \star
11	A L3	0	0	x	x	X	X	- \star
12	An	0	X	x	x	X	X	
13	W L1	X	x	X	X	0	0	-
14	W L2	0	X	x	x	0	0	-
16	W L3	0	0	x	X	0	0	\bullet
17	W sys	0	X	X	X	X	X	Sys = system
18	var L1	X	X	X	X	0	0	
19	var L2	0	x	x	x	0	0	
20	var L3	0	0	X	X	0	0	
21	var sys	0	x	X	X	X	X	Sys = system
22	VA L1	X	X	X	X	0		
23	VA L2	0	x	x	x	0	0	
24	VA L3	0	0	x	x	0	0	
$\underline{25}$	VA sys	0	X	X	X	X	X	Sys = system
26	PF L1	X	X	X	X	0	0	\star
$\underline{27}$	PF L2	0	X	X	X	0	0	\star
28	PF L3	0	0	X	X	0	0	\star
29	PF sys	0	X	x	X	X	X	Sys = system
30	Hz	X	X	x	X	X	X	
31	Phase seq.	0	x	x	X	x	X	
32	ASY L-N	0	X	x	X	X	X	
33	ASY L-L	0	X	x	x	X	X	
34	Phase loss	0	X	X	X	X	X	
35	VA sys dmd	X	x	x	X	X	X	Sys = system
36	W sys dmd	X	X	x	X	X	X	Sys = system
37	A L1 dmd	x	X	X	X	X	X	-
38	A L2 dmd	0	X	X	X	X	X	-
39	A L3 dmd	0	0	x	x	X	X	-
40	A L dmd	X	X	X	X	X	X	\square
41	A L1 THD	X	x	x	X	X	X	
42	A L2 THD	0	X	x	X	x	X	
43	A L3 THD	0	0	X	x	X	X	
44	V L1 THD	X	X	X	X	X	X	
45	V L2 THD	0	X	X	X	X	X	
46	V L3 THD	0	0	X	X	X	X	
47	kWh	X	X	x	X	x	x	Total and partial
48	kvarh	X	x	x	x	X	X	Total and partial
49	hours	x	x	x	x	x	x	

$(x)=$ available $\quad(0)=$ not available
(\star) These variables are available also as MAX detection and data storage (on EEPROM at power down),
(\star) These variables are available also as M IN detection and data storage (on EEPROM at power down).
(■) Highest value among the 3 -phase.
(O) Alarm available only on the consumed power (+).

CARLO GAVAZZI

Alarm parameters and logic

- Block enable.
- Controlled variable (VLN, ...).
- Alarm type (up, down, window int, window ext).
- Activation function.
- ON set-point.
- OFF set-point.
- ON delay.
- Logical function (AND, OR).
- Digital output (1, 2).

A, B, C... up to 16 parameter control blocks.

Up alarm
On alarm > Off alarm

Down alarm
On alarm < Off alarm

In window alarm

Out window alarm with start up deactivation

Note: any alarm working mode can be linked to the "Start-up deactivation" function which disables only the first alarm after power on of the instrument.

AND/OR logical alarm examples:

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	\%	"ASY"	"L N"	Phase to neutral asymmetry
2	V L1	V L2	V L3	
3	V LN sys		PF sys	Sys = system
4	V LL sys		PF sys	Decimal point blinking on the right of the display
5	V L1 2	V L2 3	V L3 1	Decimal point blinking on the right of the display
6	\%	"ASY"	"L L"	Phase to phase asymmetry
7	"PH"	"SEq"	123/132	Phase sequence
8	A L1	A L2	A L3	
9	A dmd L1	A dmd L2	A dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
10	An	" n "	Hz	An= neutral current
11	W L1	W L2	W L3	
12	W dmd L1	W dmd L2	W dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
13	PF L1	PF L2	PF L3	
14	var L1	var L2	var L3	
15	VA L1	VA L2	VA L3	
16	VA sys	W sys	var sys	
17	VA dmd sys	W dmd sys	Hz	dmd = demand (integration time selectable from 1 to 30 minutes)
18	V max L1	$V \max$ L2	V max L3	Max value of phase to neutral voltage
19	V min L1	V min L2	V min L3	Min value of phase to neutral voltage
20	A max L1	A max L2	A max L3	M ax value of current
21	A min L1	A min L2	A min L3	M in value of current
22	W max L1	W max L2	W max L3	M ax value of W
23	PF min L1	PF min L2	PF min L3	M in value of PF
24	VA dmd sys max	W dmd sys max	"H"	Max system dmd
25	A dmd max		"H"	Highest value among the 3-phase
26	V L1 THD	V L2 THD	V L3 THD	
27	A L1 THD	A L2 THD	A L3 THD	
28	h (MSD)	h	h (LSD)	Hour counter
29	kvarh (MSD)	kvarh	kvarh (LSD)	Partial counter
30	kWh (MSD)	kWh	kWh (LSD)	Partial counter
31	kvarh (MSD)	kvarh	kvarh (LSD)	Total counter
32	kWh (MSD)	kWh	kWh (LSD)	Total counter

MSD: most significant digit
LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15933453.7 kWh

2) Example of kvarh visualization:

This example is showing 3553944.9 kvarh

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted
Fundamental content Harmonic content
$\mathrm{A}_{\text {rms }}=$

100\%
0\%
$1.1107|\overline{\mathrm{~A}}|$

Figure B
Sine wave, indented
Fundamental content Harmonic content Frequency spectrum: 3rd to 16th harmonic Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%
10...30\%

Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5\% FS

Accuracy

Wh, accuracy (RDG) depending on the current

varh, accuracy (RDG) depending on the current

——Accuracy limits (Reactive energy)
5(6A) Start-up current: 30 mA

Used calculation formulas

Phase variables
Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{I N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{i W}\right)_{i} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$
Instantaneous apparent power
$V A_{T}=V_{T N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{VAr}_{1}=\sqrt{\left(\text { VA }_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{12}+V_{23}+V_{31}}{3}$
Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \text { max }}-V_{L L \text { min }}\right)}{V_{L L} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \max }-V_{L N \min }\right)}{V_{L N} \Sigma}$
Three-phase reactive power
$V A r_{I}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$

Three-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Harmonic Analysis

| Analysis principle | FFT | Display of harmonic values | THD \% |
| :--- | :--- | :--- | :--- | :--- |
| Harmonic measurement
 Current
 Voltage | Up to 15th harmonic
 Up to 15th harmonic | | Others
 The harmonic distortion
 can be measured in both
 3-wire or 4-wire systems. |
| Type of harmonics | THD (NL1)
 THD (NL2)
 THD (NL3)
 THD (AL1)
 THD (AL2)
 THD (AL3) | | |

Wiring diagrams

When the CT is connected to earth, a leakage current from 0 to 1.8 mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.

Wiring diagrams

When the CT is connected to earth, a leakage current from 0 to 1.8 mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.

Output connections

Open collector outputs: The load resistance (Rc) must be designed so that the closed contact current is lower than 100 mA ; the VDC voltage must be lower than or equal to 30 V . VDC: external power supply voltage. Out: positive output contact (open collector transistor). GND: ground output contact (open collector transistor).

Relay out.
 RS485 port

Fig. 15

Fig. 16

Fig. 17

Front Panel Description

1. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

2. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

Dimensions and Panel Cut-out

