Energy Management Power Analyzer Type WM14-96 "Basic Version"

- Optional dual pulse output
- Alarms (visual only) V_{LN}, An
- Optional galvanically insulated measuring inputs

Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables. Housing for panel mounting,
(front) protection degree IP65, and optional RS485 serial port or dual pulse output. Parameters programmable by means of CptBSoft.

Type Selection

Range codes
AV5: $380 / 660 \mathrm{~V}_{\mathrm{L}-/} / 5(6)$ AAC VL-N: 185 V to 460 V VL-L: 320 V to 800 V
AV6: $120 / 208 \mathrm{~V}_{\mathrm{L}-\mathrm{L}} / 5(6) \mathrm{AAC}$ VL-N: 45 V to 145 V VL-L: 78 V to 250 V
Phase current: 0.03 A to 6 A
Neutral current: 0.09 to 6A

System

3: 1-2-3-phase, balanced/unbalanced load,with or without neutral

Input specifications

Rated inputs	
Current "X-S options"	3 (non insulated each other)
Current "SG-PG options"	3 (insulated each other)
Voltage	4
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{V}=1 \mathrm{AV} 5$:
	1150W-VA-var, FS:230VLN,
	400VLL; AV6: 285W-VA-var,
	FS:57VLN, 100VLL
Current	0.25 to 6 A : \pm (0.5\% FS +1DGT)
	0.03 A to $0.25 \mathrm{~A} \pm(0.5 \% \mathrm{FS}+7 \mathrm{DGT}$)
Neutral current	0.25 to $6 \mathrm{~A}: \pm(1.5 \%$ FS +1DGT)
	0.09A to 0.25A \pm (0.5\% FS+7DGT)
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power,	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \mathrm{FS}+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(1 \% \mathrm{FS} \\ & \text { +5DGT) } \end{aligned}$
Reactive power	0.25 to $6 \mathrm{~A}: \pm(2 \% \mathrm{FS}+1 \mathrm{DGT})$;

- Class 1 (active energy)
- Class 2 (reactive energy)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3x3 digit
- Display of energies: 8+1 digit
- System variables and phase measurements: W, W dmd , var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, $A_{\text {dmd }}, \mathrm{Hz}$
- $\mathbf{A}_{\text {max }}, \mathbf{A}_{\text {dmd } \max }, \mathbf{W}_{\text {dmd max }}$ indication
- Energy measurements: kWh and kvarh
- Hour counter ($5+2$ DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 24V, 48V, 115V, 230V, 50-60Hz; 18 to 60VDC
- Protection degree (front): IP65
- Front dimensions: $96 \times 96 \mathrm{~mm}$
- Optional RS422/485 serial port

How to order CptBSoft

CptBSoft (compatible only with S or SG options): software to program the working parameters of the power analyzer and to read the energy and the instantaneous variables.

Power supply

A: 24 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
B: 48VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
C: 115VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
D: 230VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
3: 18 to 60VDC (not available in case of SG or PG options)

Options

X: \quad None
S: RS485 port
SG: RS485+galvanic insulated measurig inputs
PG: Dual pulse output + galvanically insulated measuring inputs.

CARLO GAVAZZI

Input specifications (cont.)

Display (cont.) Read-out for hour counter		120/208V ${ }_{\text {L-L }}$ (AV6)	$\begin{aligned} & 453 \mathrm{~K} \Omega \pm 5 \% \\ & \leq 0.02 \Omega \\ & \text { (PG-SG options) } \\ & 1 \mathrm{M} \Omega \pm 1 \% \\ & 1 \mathrm{M} \Omega \pm 1 \% \\ & \leq 0.02 \Omega \end{aligned}$
	1+3+3 DGT (Max. indication: 9999 9.99)	Current Input impedance	
Measurements	Current, voltage, power, power factor, frequency, energy, TRMS measurement	$\begin{aligned} & 380 / 660 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}(\mathrm{AV5}) \\ & 120 / 208 \mathrm{~V}_{\mathrm{L}-\mathrm{L}}(\mathrm{AV} 6) \\ & \text { Current } \end{aligned}$	
Coupling type	Direct	Frequency	48 to 62 Hz
Crest factor	< 3, max 10A peak	Overload protection	
Input impedance 380/660VLL (AV5)	$\begin{aligned} & \text { (X-S options) } \\ & 1 \mathrm{M} \Omega \pm 5 \% \end{aligned}$	Continuos voltage/current For 500ms: voltge/current	1.2 F.S. 2 Un/36A

RS485 Serial Port Specifications

RS422/RS485 (on request) Type		Data (bidirectional)	System, phase variables and energies All configuration parameters
	Multidrop	Dynamic (reading only)	
	dynamic variables)	Static (writing only)	
Connections	2 or 4 wires, max. distance	Data format	1 bit di start, 8 data bit,
	1200 m , termination directly		no parity, 1 stop bit
	on the instrument	Baud-rate	$9600 \mathrm{bit} / \mathrm{s}$
Addresses	1 to 255 , key-pad selectable		
Protocol	MODBUS/JBUS		

CptBSoft software: parameter programming and reading data

CptBSoft

	NT/XP. Two different working modes can be selected:
Working mode	- management of a local
	RS485 network;
- management of	
communication from a single	
instrument to PC (RS232);	
Data access	By means of RS485 serial port.

Dual pulse output

Digital outputs (on request)
Pulse outputs
Number of outputs
Number of pulses

Output type

Multi language software to program the working parameters of the power analyzer and to read the energies and the instantaneous variables. The program runs under Windows 95/98/98SE/2000/

Two different working modes can be selected.

Software functions

Power Supply Specifications

230VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
115 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
48 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$

	24 VAC
	$-15+10 \%, 50-60 \mathrm{~Hz}$
	18 to 60 VDC
Power consumption	AC: 4.5 VA
	DC: 4 W

General Specifications

Operating temperature	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ ($\mathrm{RH}<90 \%$ non condensing)		mesuring inputs and RS485. 4000VAC, 500VDC between
Storage	-30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.140^{\circ} \mathrm{F}\right)$		power supply and RS485
temperature	(RH < 90\% non condensing)	Dielectric strength	4000 VAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between mesuring inputs and power supply. 500VAC/DC between	Emissions	EN50084-1 (class A) residential environment, commerce and light industry

CARLO GAVAZZI

General Specifications (cont.)

EMC (cont.) Immunity	EN61000-6-2 (class A) industrial environment.	Housing Dimensions (WxHxD)	$96 \times 96 \times 63 \mathrm{~mm}$
Pulse voltage (1.2/50 $\mu \mathrm{s}$)	EN61000-4-5	Material	ABS self-extinguishing: UL 94 V-0
Safety standards	IEC60664, EN60664		
Approvals	CE, (cURus, CSA only "X"	Mounting	Panel
	and "S" options)	Protection degree	Front: IP65 (standard),
Connections 5(6) A Max cable cross sect. area	Screw-type $2.5 \mathrm{~mm}^{2}$		NEMA4x, NEMA12 Connections: IP20
		Weight	Approx. 400 g (pack. incl.)

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	A L1	A L2	A L3	
4	A L1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
5	An	AL.n		AL.n if neutral current alarm is active
6	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
7	PF L1	PF L2	PF L3	
8	var L1	var L2	var L3	Decimal point blinking on the right of the display if generated power
9	VA L1	VA L2	VA L3	
10	VA system	W system	var system	
11	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
12		W dmd MAX		Maximum sys power demand
13	Wh (MSD)	Wh	Wh (LSD)	The total indication is given in max 3 groups of 3 digits.
14	varh (MSD)	varh	varh (LSD)	The total indication is given in max 3 groups of 3 digits.
15	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits.
16	A MAX			max. current among the three phases
17	A dmd max			max. dmd current among the three phases
18	h			hour counter

MSD: most significant digit
LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15933453.7 kWh
2) Example of kvarh visualization:

This example is showing 3553944.9 kvarh

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted
Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure B
Sine wave, indented
Fundamental content
Harmonic content
Frequency spectrum: 3rd to 16th harmonic
Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10... 30%

Frequency spectrum: 3rd to 16th harmonic
Additional error: <0.5\% FS

Accuracy

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

: this graph is only referred to instrument models with the "SG or PG" option.
: this graph is only referred to instrument models with the " X or S " option.

Used calculation formulas

Phase variables
Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{N S}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$

Instantaneous apparent power
$V A_{1}=V_{I N} \cdot A_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{2}=\frac{V_{1}+V_{2}+V_{3}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{\underline{I}}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

CARLO GAVAZZI

Used calculation formulas (cont.)

	Energy metering
	Where:
	$i=$ considered phase (L1, L2 or L3)
$k W h_{i}=\int_{i_{1}}^{t_{2}} P_{i}(t) d t \cong \Delta t \sum_{n_{1}}^{n_{i}} P_{u i}$	$P=$ active power
$k V_{a r h}=\int_{i_{1}}^{t_{2}} Q_{i}(t) d t \cong \Delta t \sum_{a_{1}}^{n_{2}} Q_{\Delta i}$	$Q=$ reactive power
	$t_{1}, t_{2}=$ starting and ending time points of consumption recording
	$n=$ time unit
	$\Delta t=$ time interval between two successive power consumptions
	$n_{1}, n_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

NOTE: Only for "PG" and "SG" options: the current measuring inputs are galvanically insulated and therefore they can be connected to ground singly.
NOTE: For all models except for "PG" or "SG" the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.
ATTENTION: only one ammeter input can be connected to earth, as shown in the electrical diagrams.

RS485 port connections

Fig. 7: a-Last instrument; b-1...n Instrument c-RS485/232 serial converter

Dual pulse output connections

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.
S
Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

